Maximum dimension of subspaces with no product basis
نویسندگان
چکیده
Let $n\ge2$ and $d_1,\ldots,d_n\ge2$ be integers, $\mathcal{F}$ a field. A vector $u\in\mathcal{F}^{d_1}\otimes\cdots\otimes\mathcal{F}^{d_n}$ is called product if $u=u^{[1]}\otimes\cdots\otimes u^{[n]}$ for some $u^{[1]}\in\mathcal{F}^{d_1},\ldots,u^{[n]}\in\mathcal{F}^{d_n}$. basis composed of vectors basis. In this paper, we show that the maximum dimension subspaces $\mathcal{F}^{d_1}\otimes\cdots\otimes\mathcal{F}^{d_n}$ with no equal to $d_1d_2\cdots d_n-2$ either (i) $n=2$ or (ii) $n\ge3$ $\#\mathcal{F}>\max\{d_i : i\not=n_1,n_2\}$ $n_1$ $n_2$. When $\mathcal{F}=\mathbb{C}$, result related number simultaneously distinguishable states in general probabilistic theories (GPTs).
منابع مشابه
Dimension of the orbit of marked subspaces
Given a nilpotent endomorphism, we consider the manifold of invariant subspaces having a fixed Segre characteristic. In [Linear Algebra Appl., 332–334 (2001) 569], the implicit form of a miniversal deformation of an invariant subspace with respect to the usual equivalence relation between subspaces is obtained. Here we obtain the explicit form of this deformation when the invariant subspace is ...
متن کاملOn the dimension of subspaces with bounded Schmidt rank
We consider the question of how large a subspace of a given bipartite quantum system can be when the subspace contains only highly entangled states. This is motivated in part by results of Hayden et al., which show that in large d × d–dimensional systems there exist random subspaces of dimension almost d, all of whose states have entropy of entanglement at least log d − O(1). It is also a gener...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
Computing the Dimension of Linear Subspaces
Since its very beginning, linear algebra is a highly algorithmic subject. Let us just mention the famous Gauß Algorithm which was invented before the theory of algorithms has been developed. The purpose of this paper is to link linear algebra explicitly to computable analysis, that is the theory of computable real number functions. Especially, we will investigate in which sense the dimension of...
متن کاملCEBYSEV SUBSPACES OF FINITE DIMENSION IN Lx
1. Introduction. If £ is a real normed linear space, a subspace M of E is said to be a CebySev subspace ii to each y in E there exists a unique nearest element x in M, that is, an element x in M such that ||y—x|| <||y—z\\ for zEM, z^x. The problem of characterizing such subspaces for the classical Banach spaces of functions is an interesting one. The first (and best) result of this nature was t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2021
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2021.03.001